HealthLinks is your destination for reliable, understandable, and credible health information and expert advice that always keeps why you came to us in mind.

Real Life Applications Of Hydrolysis And Concentration Gradient

101 231
Hydrolysis literally means reaction with water. It is a chemical process in which a molecule is cleaved into two parts by the addition of a molecule of water. One fragment of the parent molecule gains a hydrogen ion (H+) from the additional water molecule. The other group collects the remaining hydroxyl group (OH-). To illustrate this process, some examples from real life and actual living systems may be discussed here.

The most common hydrolysis occurs when a salt of a weak acid or weak base (or both) is dissolved in water. Water autoionizes into negatively charged hydroxyl ions and positively charged hydrogen ions. The salt breaks down into positive and negative ions. For example, sodium acetate dissociates in water into sodium and acetate ions. Sodium ions react very little with hydroxyl ions whereas acetate ions combine with hydrogen ions to produce neutral acetic acid, and the net result is a relative excess of hydroxyl ions, causing a basic solution.

However, under normal conditions, only a few reactions between water and organic compounds occur. Generally, strong acids or bases must be added in order to achieve hydrolysis where water has no effect. The acid or base is considered a catalyst. They are meant to speed up the reaction, but are recovered at the end of it. Acid–base-catalyzed hydrolyses are very common; one example is the hydrolysis of amides or esters. Their hydrolysis occurs when the nucleophile (a nucleus-seeking agent, e.g., water or hydroxyl ion) attacks the carbon of the carbonyl group of the ester or amide. In an aqueous base, hydroxyl ions are better nucleophiles than dipoles such as water. In acid, the carbonyl group becomes protonated, and this leads to a much easier nucleophilic attack. The products for both hydrolyses are compounds with carboxylic acid groups.

Perhaps the oldest example of ester hydrolysis is the process called saponification. It is the hydrolysis of a triglyceride (fat) with an aqueous base such as sodium hydroxide (NaOH). During the process, glycerol, also commercially named glycerin, is formed, and the fatty acids react with the base, converting them to salts. These salts are called soaps, commonly used in households. Moreover, hydrolysis is an important process in plants and animals, the most significant example being energy metabolism and storage. All living cells require a continual supply of energy for two main purposes: for the biosynthesis of small and macromolecules, and for the active transport of ions and molecules across cell membranes. The energy derived from the oxidation of nutrients is not used directly but, by means of a complex and long sequence of reactions, it is channeled into a special energy-storage molecule, adenosine triphosphate (ATP).

The ATP molecule contains pyrophosphate linkages (bonds formed when two phosphate units are combined together) that release energy when needed. ATP can be hydrolyzed in two ways: the removal of terminal phosphate to form adenosine diphosphate (ADP) and inorganic phosphate, or the removal of a terminal diphosphate to yield adenosine monophosphate (AMP) and pyrophosphate. The latter is usually cleaved further to yield two phosphates. This results in biosynthesis reactions, which do not occur alone, that can be driven in the direction of synthesis when the phosphate bonds are hydrolyzed.

In addition, in living systems, most biochemical reactions, including ATP hydrolysis, take place during the catalysis of enzymes. The catalytic action of enzymes allows the hydrolysis of proteins, fats, oils, and carbohydrates. As an example, one may consider proteases, enzymes that aid digestion by hydrolyzing peptide bonds in proteins. They catalyze the hydrolysis of interior peptide bonds in peptide chains, as opposed to exopeptidases, another class of enzymes that catalyze the hydrolysis of terminal peptide bonds, liberating one free amino acid at a time.

However, proteases do not catalyze the hydrolysis of all kinds of proteins. Their action is stereo-selective: Only proteins with a certain tertiary structure will be targeted. The reason is that some kind of orienting force is needed to place the amide group in the proper position for catalysis. The necessary contacts between an enzyme and its substrates (proteins) are created because the enzyme folds in such a way as to form a crevice into which the substrate fits; the crevice also contains the catalytic groups. Therefore, proteins that do not fit into the crevice will not be hydrolyzed. This specificity preserves the integrity of other proteins such as hormones, and therefore the biological system continues to function normally.

A concentration gradient occurs where the concentration of something changes over a certain distance. For example, a few drops of food dye in a glass of water diffuse along the concentration gradient, from where the dye exists in its highest concentration (for instance, the brightest blue or red) to where it occurs in its lowest concentration (the water is still clear). The diffusion will continue until the concentration of the dye becomes uniform in all directions of the water. Concentration gradients are the chemical driving force behind many processes that take place near cell membranes.

In general, two types of diffusion are found in living cells: passive and active. It is, however, very rare to encounter pure passive diffusion, where molecules or ions move freely across the cell membrane, following a concentration gradient. For example, water is free to move across a membrane in either direction. But if the solutes inside the cell are barred from moving across the membrane, the resulting phenomenon is called osmosis. The water passes across the membrane into a region of higher solute concentration attempting to reach the ideal equilibrium, where for each side of the membrane the water concentration is the same. This movement leads to the buildup of osmotic pressure, however, so the flow of water stops before the membrane bursts.

Active diffusion occurs when membranes translocate or move molecules or ions from regions of low concentration to those of higher concentration. For example, many cells are able to increase the internal concentration of solutes until very high levels are reached and considerable concentration gradients are established. In this case, a process other than diffusion must be available to supply the energy. Generally, the energy comes from the hydrolysis of adenosine triphosphate (ATP), an energy-rich molecule. Active transport is very important for tissues that are specialized, such as nerve and muscle tissues as well as secretory (or excretory) tissues like the kidneys of animals and the gills of marine life, so solutes may be absorbed against concentration gradients.

In addition, ion concentration gradients existing between two sides of a membrane produce an electrical potential difference, ranging between 50 and 100 millivolts or mV (10-3 volt), the outside being positive with respect to the interior. This is the direct consequence of the distribution of cations, especially potassium and sodium ions. Any stimulation by electrical, mechanical, or chemical means at one point of the membrane will create a change in the potential membrane at that point. The altered potential, also called the active potential, will move as a wave over the membrane surface. This provides a means of rapid communication between different regions of a cell. In the case of an elongated nerve cell, this constitutes a nerve impulse.

It is interesting to note that this active potential is used by some fish, such as catfish and eel, to defend them as well as to stun their prey. The excitable membranes of the fish each develop a potential of 100 millivolts, but are stacked in such a manner that their potential differences add up to several hundred volts.
Source...

Leave A Reply

Your email address will not be published.